# Three Layer Fresnel Reflection Coefficients

Aaron Webster

February 16, 2012

### 0.1 Metal-BK7-Air

#### 0.1.1 Ag-BK7-Vacuum



Figure 1: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ag-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.2 Al-BK7-Vacuum



Figure 2: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Al-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.3 Au-BK7-Vacuum



Figure 3: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Au-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.4 Be-BK7-Vacuum



Figure 4: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Be-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.5 Cr-BK7-Vacuum



Figure 5: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cr-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.6 Cu-BK7-Vacuum



Figure 6: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cu-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.7 Ni-BK7-Vacuum



Figure 7: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ni-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.8 Pd-BK7-Vacuum



Figure 8: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pd-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.9 Pt-BK7-Vacuum



Figure 9: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pt-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.10 Ti-BK7-Vacuum



Figure 10: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ti-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.1.11 W-BK7-Vacuum



Figure 11: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (W-BK7-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

### 0.2 Metal-LAH79-Air

#### 0.2.1 Ag-LAH79-Vacuum



Figure 12: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ag-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.2 Al-LAH79-Vacuum



Figure 13: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Al-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.3 Au-LAH79-Vacuum



Figure 14: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Au-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



#### 0.2.4 Be-LAH79-Vacuum



Figure 15: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Be-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.5 Cr-LAH79-Vacuum



Figure 16: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cr-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.6 Cu-LAH79-Vacuum



Figure 17: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cu-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.7 Ni-LAH79-Vacuum



Figure 18: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ni-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.8 Pd-LAH79-Vacuum



Figure 19: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pd-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.9 Pt-LAH79-Vacuum



Figure 20: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pt-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.10 Ti-LAH79-Vacuum



 $\lambda_0=632.8\,\mathrm{nm},\,\epsilon_1=\mathrm{LAH79},\,\epsilon_2=\mathrm{Ti},\,\epsilon_3=\mathrm{Vacuum}$ 

Figure 21: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ti-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

#### 0.2.11 W-LAH79-Vacuum



Figure 22: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (W-LAH79-Vacuum) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

## 0.3 Metal-BK7- $H_2O$



Figure 23: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ag-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 24: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Al-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 25: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Au-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 26: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Be-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 27: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cr-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 28: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cu-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 29: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ni-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 30: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pd-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 31: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pt-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 32: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ti-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 33: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (W-BK7-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??

## 0.4 Metal-LAH79- $H_2O$



Figure 34: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ag-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 35: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Al-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 36: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Au-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 37: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Be-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 38: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cr-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 39: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Cu-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 40: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ni-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 41: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pd-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 42: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Pt-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 43: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (Ti-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??



Figure 44: Reflection coefficient  $|\tilde{r}_{123}|$  for the three layer fresnel system (W-LAH79-H<sub>2</sub>O) as a function of incident angle and thickness of the metal layer  $\epsilon_2$ . Numeric values of the permittivity are found in Table ??