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S1. INTRODUCTION

This document is supplementary information to Probing biomechanical properties with a centrifugal force quartz crystal
microbalance. Herein we give details on numerical simulations and further derivations which are referenced in the
main text. Unless specified otherwise, all section, figure, table, and equation references pertaining to the supplement
are prefixed by an “S”, while references to the corresponding manuscript are not prefixed.

S2. SIMULATION DETAILS

Finite element simulations were carried out using the software COMSOL Multiphysics 4.3 (4.3.0.233) [1]. Though
this software’s source code is not available for scrutinous review, our implementation is generic and may be carried
out using other software (e.g. OpenFOAM [2], SU2 [3]). Unless otherwise stated, implementation specific information is
applicable to COMSOL.
The simulation is done by solving the steady state incompressible Navier Stokes equations, neglecting turbulence,
using finite element analysis in two dimensions

ρ (u̇ · ∇) u̇ = ∇ ·
(
−ρI + η

(
∇u̇ + (∇u̇)T

))
+ F (S1)

ρ∇ · u̇ = 0 (S2)

where u̇ is flow velocity field, ρ is fluid density, η is dynamic viscosity, and F is the body force per unit volume. The
computational domain is set up as shown in FIG. S1.
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FIG. S1. Computational geometry for the simulation.

The left hand side ( ) is a sliding wall and is given a tangential velocity of u̇⊥ = iωu0, where ω = 2πf is the angular
frequency of oscillation and u0 = 1× 10−2 nm is its amplitude. The top and bottom ( ) are given a periodic flow
condition such that their pressure difference is zero. The right hand side ( ) has a zero-slip condition. The two
materials 1, the particle, and 2, the medium in domains D1 and D2 are assigned a volume force F = iωρu̇, where ρ
is the density of the material, (e.g. ρ1 = 1.06 g cm−3 for polystyrene and ρ2 = 1 g cm−3 for water). Finally. an initial
pressure point constraint of p0 = 0 is assigned to the point in the bottom right of the domain.
The sphere (or, more appropriately, cylinder in 2D) comprising D1 with diameter d and radius r is located a distance
s > −r, measured from the bottom of the sphere, from the oscillating boundary. If s > 0, the sphere does not make
contact with the boundary. If s ≤ 0, the sphere is truncated at the boundary resulting in a finite contact radius rc.
It is useful to sample in either domain, so we either sweep rc or s, converting between them with

rc (s) =
√

2r − s
√
s (S3)

s (rc) =
(
r −

√
r2 − r2

c

)
sgn (rc) (S4)

The number density NL was controlled by increasing or decreasing the height of the domain proportional to the size
of the sphere.
The materials in the simulation are assigned a complex dynamic viscosity η = η′− iη′′. This is related to the complex
bulk modulus G = G′ + iG′′ by

η = G

iω (S5)

and the loss tangent, the angle between the real and imaginary components is

tan δ = G′′

G′
(S6)

Specific to the stationary solver in COMSOL, in the Study→Stationary Solver→Advanced window, “Allow complex-
valued output from functions with real input” was checked. This, coupled with the complex valued input for the body
forces, will produce shear waves in the simulation.
The mesh settings were calibrated in COMSOL for fluid dynamics with a maximum mesh size of 1× 10−9 m along the
oscillating boundary. All other meshes were generated automatically. As for the size of the computational domain,
we find that a height (parallel to the oscillating boundary) of h = 2d and width (perpendicular to the oscillating
boundary) w = 2d, minimum of 500 nm, produces consistent results with a minimum of error and computational
resources.
It is important to note that, because the simulation is two dimensional, what is actually simulated are infinite cylinders
rather than spheres. For Sauerbrey type viscoelastic films, the influence of this is negligible. However, for asperity
contacts such as spheres, we find that the results, however qualitatively correct, do not always result in exact numerical
agreement with experiment [4]. An extended simulation in three dimensions at some point is warranted.

S2.1. Contact Surface Density

In the main manuscript we plot shifts in ∆f and ∆Γ as a function of a parameter called contact surface density, Ac.
This allows one to compare shifts between particles with different radii. To be clear, we define Ac as the ratio of the



3

area of the sphere in contact with the oscillating boundary (twice the contact radius in 2D) to the area (length in
2D) of the domain. This means, for example, that for a domain with h = 2d, the maximum contact area will be d
and the maximum value of Ac = 0.5

S2.2. Extracting Shifts

Shifts in frequency, ∆f , and bandwidth (half-width at half maximum), ∆Γ, are computed by evaluating the stress-
speed ratio of the oscillating boundary according to the relationship

∆f + i∆Γ
fF

= i
πZq

ZL = i
πZq

〈σ
u̇

〉
(S7)

where σ is the (complex) stress, u̇ is the (complex) velocity, ZL is the load impedance, and 〈 〉 denotes a line
average along the boundary. In COMSOL, and in the coordinates of FIG. S1, σ is Total stress, y component (v)
and u̇ is Velocity field, y component, (spf.T_stressy). Note that the stress speed ratio 〈σ/u̇〉 is dimensionally
equivalent to specific acoustic impedance, also called “shock impedance”, sound pressure over velocity. In other words,
the stress-speed ratio is the impedance of the film.

S2.3. Verification Examples

Here we check the validity of the numerical simulation with examples for which the QCM’s response is well
known.

S2.3.1. Evanescent Shear Wave

Setting up the model as described produces a shear wave which closely matches theory, as shown in FIG. S2. An
analytic expression of the evanescent shear wave in a liquid has been reported [5] to be

u(z)
u0

= exp
(
−
√

iρω
η

z

)
(S8)

where η = η′ − iη′′ is the complex viscosity, ρ is the density of the liquid, ω is the angular frequency of the QCM
oscillation, and z is the spatial extension. The 1/e penetration depth δ is

δ = −
(
=
(√

ρω

iη

))−1
(S9)

With ρ = 1 g cm−3 and |η|2 = 1mPa s, EQN. S9 predicts δ ≈ 252 nm. This is in good agreement with the simulation
data, shown in FIG. S2.

S2.3.2. Semi-Infinite Viscoelastic Medium

A semi-infinite medium will produce a complex response described by [6] [7]

∆f + i∆Γ
fF

= i
πZq

√
ρG (S10)

= 1
πZq

(−1 + i)√
2
√
ωρη (S11)
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FIG. S2. QCM shear wave decay at 5MHz, comparison between simulation and theory.

f = ω/(2π) is the frequency of the crystal, ρ and η are the density and viscosity of the medium in contact with the
crystal, and ρq and µq are the density and shear modulus of quartz. This model applies for crystals with one side in
contact with the viscoelastic material. This is related to the dynamic viscosity and shear modulus by

∆f + i∆Γ
fF

= i
πZq

(−1 + i)√
2

√
ρω (η′ − iη′′) (S12)

= i
πZq

√
ρ (G′ + iG′′) (S13)

The simulation geometry was set as described in FIG. S1 but without D1 (no sphere). Extracted values of ∆f and ∆Γ
are presented in FIG. S3 as a function of the viscosity η of medium 1. In FIG. S3(a) we sweep η′ for a Newtonian fluid,
η′′ = 0. In FIG. S3(b) we model a non-Newtonian sample; η′ = 1mPa s and η′′ is swept. The excellent agreement
with theory demonstrates that our simulation is applicable for a wide range of materials.
It is of note that our Navier-Stokes approach (which solves for u̇) does not converge in the limit of a perfectly elastic
material, e.g. G = G′ or η = η′′; these systems are typically solved for u. It is perhaps possible to couple these two
domains, but we have not attempted to do so.

S3. MECHANICAL MODEL

We have employed a mechanical model based on coupled oscillators shown in FIG. S4. Here the resonance of the
QCM at ω2

q = kq/mq is coupled to a mass mL through a spring kL and dashpot ξL. The spring and dashpot are not
actual springs and dashpots, rather they are analogies for the coupling of two systems with different resonances in
the small load approximation. The QCM itself has a small damping term, but it is small enough that we neglect it.

The derivation of this equation is described in detail in REF. [8]. Here we use the same equation but as a function
of kL, rather than that of the load resonance ω2

L = kL/mL; the former being more appropriate to our analysis. Using
the small load approximation, the response of the system as a function of its coupling kL is

∆f + i∆Γ
fF

= NL

πZq

mLωq (kL + iωqξL)
mLω2

q − (kL + iωqξL) (S14)

where Zq is the acoustic impedance of AT cut quartz, fF is the fundamental frequency of the resonator, and NL is a
number surface density (number per unit area) for discrete loads.



5

0 2 4 6

·10−3

−2

−1

0

1

2
·103

(a)

real viscosity η′ [Pa s]

∆f
,∆

Γ
[h
er
tz

]

0 0.2 0.4 0.6 0.8 1

·10−2

−1

0

1

2

3

·103

(b)

imaginary viscosity η′′ [Pa s]

∆f theory ∆Γ theory ∆f simulation ∆Γ simulation

FIG. S3. Comparison of ∆f and ∆Γ verses viscosity η for both the finite element simulation and EQN. S11. (a) η′′ = 0 and η′
is swept (a Newtonian liquid). (b) η′ = 1mPa s and η′′ is swept.

load
mL

kLξL

QCM
mq

kq

FIG. S4. Coupled oscillator mechanical model for QCM behavior.

FIG. S5 shows a comparison between the finite element simulation and a best fit of EQN. S14. Here the only free
system parameter is ξL, which we find to be approximately 7.5× 10−7 Nsm−1. The domain of the fit is set by Ac = 0
and the frequency zero crossing at kzc = mLω

2
q.

Fitting is simplified with a parametric plot of ∆Γ verses ∆f . For hard spheres this will form a circle with radius
rL,

rL

fF
= NL

πZq

(mLωq)2

2ξL

√
1 +

(
ξL

mLωq

)2
(S15)

≈ NL

πZq

(mLωq)2

2ξL
, for ξL � 1 (S16)
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FIG. S5. Comparison between mechanical model and finite element simulation for a 10 µm polystyrene particle.

S4. NOISE AND COMPARISON TO QCM-D

Our experimental setup used a 25mm diameter 5MHz gold coated crystal in combination with an SRS QCM200
PLL based driver circuit and an external rubidium frequency standard. Typical of most QCM circuits, the QCM200
provides an output proportional to ∆f , which we use directly in all discussions of ∆f . However, unlike a QCM-D
device which gives a “dissipation factor”, D, defined in terms of the bandwidth ∆Γ as D = 2∆Γ/fF, the QCM200
outputs the motional resistance Rm of the Butterworth van Dyke equivalent circuit. Rm is, related to the bandwidth
Γ and the QCM-D dissipation D by

Rm = (4πLm) Γ (S17)
= (2πLmfF)D (S18)

where Lm is the Butterworth van Dyke equivalent motional inductance. Because of the small load approximation,
∆f/fF � 1 and likewise ∆L/Lm � 1, we can effectively treat Lm as a constant. [9] This value is typically in the
range of 30mH [10] [11] to 40mH [12] [13] [14], with 40mH being more common and the value we use in our analysis.
At Lm = 40mH, we find in water Rm = 359 W, which is within 1% of the predicted value [6] of 357 W. In this sense,
dissipation D and motional resistance Rm are independent but equivalent measures of the QCM bandwidth.
We have calculated the noise in ∆f and Rm for the SRS QCM200 in our experiment and find it to be about 0.4Hz
(0.008 ppm) for ∆f and 0.006 W (13ppm) for Rm, corresponding to a signal to noise ratio of 110 dB. This is close to
the manufacturer’s specification [10] of 0.1Hz for ∆f and ±28ppm for Rm. We have analyzed the noise separately
for both the loading and unloading orientations of the crystal, as well as for different centrifuge spin speeds. We find
no discernible difference in the noise between any of these cases. We did not at any point modify the centrifuge or
bucket assembly in an attempt to try and reduce system noise.
In comparison, a typical QCM-D such as those sold by Q-Sense [15] will have noise of about 0.3Hz in ∆f and 0.2× 10−6

in D at 5MHz [16] [17]. Converting from Rm to D and vice-versa, we find the SRS QCM200 has an equivalent noise in
D of 0.005× 10−6 and the Q-Sense QCM-D an equivalent noise in motional resistance of 0.25 W. In terms of ∆Γ, the
Q-Sense QCM-D has a noise of 0.5Hz and the SRS QCM200 0.01Hz. Even though we stated that our chosen value
for Lm gives Rm within 1% of the predicted value for water, uncertainties in the value of Lm used for the Rm-∆Γ
conversion do not significantly affect this analysis for the range of Lm values quoted in the literature.
It is clear with this comparison that the SRS QCM200 PLL based driver and a QCM-D device are both measures
of the same underlying physical phenomena taking place in a resonating quartz crystal. [9] Moreover, as exemplified
by the discrete particle data in the main text, the QCM signal amplitudes increase further with the application of
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FIG. S6. Parametric representations of the load situations from the manuscript.

centrifugal force for the device reported here. It is important to note that the important aspect of the CF-QCM, the
centrifugal force, is independent of the type of technique used to drive and monitor the quartz crystal. We therefore
see no reason why our technique would not apply to all QCM based measurement techniques.

S5. PARAMETRIC REPRESENTATION

The different load situations depicted in the main manuscript are shown parametrically in FIG. S6.
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