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1 Introduction

On the subject of pulses, there are many different mathematical formalisms which can be found in the
literature. I’ve found all of them quite confusing and inadequate in clearly describing their properties.
The purpose of this document, as the title suggests, is to present a useful mathematical formalism for
representing pulses. It was written with ultrashort pulses of light in mind, but could easily be applied
to any type of complex envelope function.

Formulas are presented for three different pulse types: the Gaussian, the sech, and the Lorentzian.
They are expressed such that

• The total integrated pulse energy is unity.

• The full width at half max (FWHM) is a obvious variable in the pulse expression.

• They are conveniently expressed in either the time or frequency domain.

Furthermore, for each pulse type, analytic formulas for the time-bandwidth product and the total inte-
grated energy with bounds are given.

1.1 Notation

In this document, the variables are used with the following conventions these variables are related to
each other by

k =
2π

λ
, ω =

2πc

λ
(1)

and

c = 299792458m/s (2)

where variables in bold are vectors. Thus, for example, in Cartesian coordinates the electric field

E =





Ex

Ey

Ez



 (3)

variable name

k spatial angular frequency
r position vector
ω angular frequency
c speed of light
λ wavelength
t time
E electric field
δt full width at half maximum in the time domain
δω full width at half maximum in the angular frequency domain

Table 1: Description of variables.
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2 Pulses of Light

The popular plane wave solution to Maxwell’s equations is

E(r, t) = E0 e
i(k·r−ωt) (4)

(i.e. monochromatic light with angular frequency ω and position vector r). As mentioned in the intro-
duction, we are most interested in the behavior of pulses of light. Pulses are characterized not by one
frequency, but a continuum of frequencies

E(r, t) =
1

2π

∫ ∞

−∞
Ẽ(ω) ei(k·r−ωt) dω (5)

Here Ẽ(ω) represents the envelope of the pulse in its angular frequency domain.
The particular formulation of Equation 5 is that of the Fourier transform. A Fourier transform enables

the representation of an arbitrary pulse by a linear superposition of simple oscillatory functions - here
mutually orthogonal complex exponential functions which satisfy the electromagnetic wave equation.
The Fourier transform and its inverse are defined by

f(t) =
1

2π

∫ ∞

−∞
f̃(ω) e−iωt dω = F

−(f̃(ω)
)

(6)

and

f̃(ω) =

∫ ∞

−∞
f(t) eiωt dt = F

+
(

f(t)
)

(7)

Where the convention F+ is the Fourier transform, and F− is its inverse. In the same way, pulses can
be represented in both the time and angular frequency domain as a Fourier transform pair

E(t) =
1

2π

∫ ∞

−∞
Ẽ(ω) e−iωt dω (8)

Ẽ(ω) =

∫ ∞

−∞
E(t) eiωt dt (9)

F
+
(

E(t)
)

= Ẽ(ω) (10)

F
−(Ẽ(ω)

)

= E(t) (11)

3 Envelope Functions

The mathematical description of the pulse envelope is carried out with variables as designated in Figure 2.
The envelopes are described in either the time or angular frequency domain by f(t) or f̃(ω), respectively.
The variables δt and δω represent the full width at half maximum (FWHM) – the width of |f(t)|2 or
|f̃(ω)|2 at half of its maximum value. The product of the two, δtδω, is the time bandwidth product. As
a consequence of the Fourier relationship, as the width of the pulse increases in the time domain, the
spectral width decreases in the frequency domain and vice-versa. In terms of the actual electric field E,
which contains a fast oscillating real and imaginary part, the function f is related by |f |2 = |E|2 (f has
no oscillatory component). This is detailed in Figure 1.

For all pulse types we have normalized them so that the temporal integral
∫ ∞

−∞

∣

∣f(t)
∣

∣

2
dt = 1 (12)

and the integral over angular frequency
∫ ∞

−∞

∣

∣f̃(ω)
∣

∣

2
dω = 2π (13)

For convince, this section treats envelope functions in a purely mathematical sense; the variables them-
selves dimensionless. Some common pulse shapes for modern femtosecond lasers are plotted in Figure
3. They are the Gaussian, the sech, and the Lorentzian. These specific pulse shapes are important in
part because they are so called transform limited: for a given spectrum they represent the shortest pulse
duration possible and the time-bandwidth product δtδω is minimized for that pulse type.
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t

E(t)

|E(t)|2

Re
(

E(t)
)

Figure 1: The envelope of a pulse is defined as the magnitude squared of its complex valued electric field.
Since the function f in the derivations has no oscillatory component, the relation between f and E is
given by |f |2 = |E|2.

t

∣

∣f(t)
∣

∣

2

|fmax|2

1
2 |fmax|2 δt

∣

∣f(t)
∣

∣

2
or
∣

∣F+
(

f̃(ω)
)∣

∣

2

ω

∣

∣f̃(ω)
∣

∣

2

|f̃max|2

1
2 |f̃max|2 δω

∣

∣f̃(ω)
∣

∣

2
or
∣

∣F−(f(t)
)∣

∣

2

Figure 2: Definition of terms. A pulse can be represented in either the time f(t) or angular frequency
f̃(ω) domain through a Fourier transform relationship. The parameters δt or δω are the width of the
function at half its maximum value. As the width of the pulse increases in the time domain, the spectral
width decreases in the frequency domain and vice-versa.
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3.1 Gaussian Pulse

A Gaussian pulse is defined by the temporal envelope

f(t, α) = A e−t2/(2α2) (14)

Where α is some, yet to be determined parameter (controlling the width of the pulse) and A is a
normalization constant. The first step is to normalize Equation 14 and find A as per the condition
described in Equation 12. To find do so, the well known Gaussian integral is computed

∫ ∞

−∞

∣

∣

∣
e−t2/(2α2)

∣

∣

∣

2

dt = A2α
√
π (15)

A =

√

1

α
√
π

(16)

Substitution of A into Equation 14, the following is obtained

f(t, α) =
(

α
√
π
)−1/2

e−t2/(2α2) (17)

In its current form using the variable α in effect controls the width of the envelope. Since we are
interested in characterizing pulses by their FWHM, it is prudent to replace α with δt, such that δt
represents the FWHM – the width of the magnitude squared envelope at half the maximum value.

|f(t, α)|2 =
1

2
|f(0)|2 (18)

∣

∣

∣ e−t2/(2α2)
∣

∣

∣

2

=
1

2
e0 (19)

e−t2/(2α2) =
1√
2

(20)

− t2

2α2
= log

(

1√
2

)

(21)

t2

2α2
=

log 2

2
(22)

t2 = α2 log 2 (23)

t = ±α
√

log 2 (24)

δt = 2α
√

log 2 , α =
δt

2
√

log 2
(25)

Note that the solution in terms of t is symmetric about t = 0. The parameter δt is then 2|t|, fitting with
the definition of the FWHM (Figure 2).

The variable α can then be inserted into Equation 17, obtaining our final expression.

f(t, δt) =

(

2
√

log 2√
π δt

)1/2

e−2t2 log 2/δt2 (26)

We now have an expression where δt describes the full width at half maximum of the magnitude squared
envelope. That is to say,

∣

∣f(t, δt)
∣

∣

2
=

1

2

∣

∣f(0, δt)
∣

∣

2
(27)

The envelope is also normalized. By taking the Fourier transform of Equation 26, a complementary
equation f̃(ω, δt), in terms of angular frequency (and the same parameter δt) can be obtained

F
+
(

f(t, δt)
)

= f̃(ω, δt) (28)

=

∫ ∞

−∞

(

2
√

log 2√
π δt

)1/2

e−2t2 log 2/δt2 eiωt dt (29)
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From a table of indefinite integrals[2], an integral of the same form is found to be
∫ ∞

−∞
e−at2 e−2bt dt =

√

π

a
eb

2/a (30)

Equating terms in the exponents from Equation 29 we obtain

a =
2 log 2

δt2
, b =

−iω

2
(31)

The integral can then be evaluated

f̃(ω, δt) =

∫ ∞

−∞

(

2
√

log 2√
π δt

)1/2

e−2t2 log 2/δt2 eiωt dt (32)

=

(

πδt2

2 log 2

)1/2
(

2
√

log 2√
π δt

)1/2

e−ω2δt2/(8 log 2) (33)

therefore

f̃(ω, δt) =

( √
π δt

√

log 2

)1/2

e−ω2δt2/(8 log 2) (34)

Equation 34 is also normalized. Note that
∫ ∞

−∞

∣

∣f̃ (ω)
∣

∣

2
= 2π (35)

This is consistent with the Fourier transformed pulse defined in units of angular frequency.
At this point it is important to point out that the pulse envelope in both the time and angular

frequency domain have been characterized entirely in terms of the (temporal) FWHM δt. This is not a
mistake. The intention here is to simplify the (eventual) numerical computation by having one parameter
controlling the width of the pulse. For example, if a 40 fs pulse was to be obtained by sampling in angular
frequency space, the integral

f(t, 40 fs) =
1

2π

∫ ∞

−∞
f̃(ω, 40 fs) e−iωt dω (36)

would be computed to obtain the pulse (in units of femtoseconds). Of course, the actual FWHM of the
pulse f̃(ω, δt) is not δt. This will be addressed shortly.

The literature often quotes what is referred to as the time bandwidth product, δtδω. As written,
Equation 26 has a FWHM of δt – the magnitude squared of the function decreases to half its maximum
value for t = ±δt/2. The FWHM of Equation 34 can be found in an analogous way by solving the
following equation with width δt

∣

∣

∣f̃(ω, δt)
∣

∣

∣

2

=
1

2

∣

∣

∣f̃(0, δt)
∣

∣

∣

2

(37)

∣

∣

∣ e−ω2δt2/(8 log 2)
∣

∣

∣

2

=
1

2
e0 (38)

e−ω2δt2/(8 log 2) =
1√
2

(39)

ω2δt2

8 log 2
=

log 2

2
(40)

ω2 =

(

2 log 2

δt

)2

(41)

ω = ±2 log 2

δt
(42)

δω =
4 log 2

δt
(43)
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Note in the last step we have defined δω to be the FWHM of f̃(ω). Multiplying them together yields
the time bandwidth product

δtδω = δt
4 log 2

δt
(44)

= 4 log 2 ≈ 2.7726 (45)

Because it is in terms of angular frequency, this result differs from the time bandwidth product, often
quoted in literature in terms of ordinary frequency, δtδν, by a factor of (2π)−1

δtδν =
δtδω

2π
=

2 log 2

π
≈ 0.4413 (46)

Gaussian functions of this form have a useful expression for their definite integrals. This can be
taken advantage of to determine what integration boundaries must be chosen to encompass a certain
proportion of the total pulse energy.

For Gaussians symmetric about the origin, this integral is expressed in terms of the error function
erf

∫ a

0

e−q2t2 dt =

√
π

2q
erf(qa) (47)

Because the Gaussian is symmetric about the origin t = 0, this can be trivially rewritten

∫ a

−a

e−q2t2 dt =

√
π

q
erf(qa) (48)

Using this form to evaluate Equation 26 with q = 2
√

log 2 /δt,

∫ a

−a

|f(t, δt)|2 dt =

∫ a

−a

2
√

log 2√
π δt

e−4t2 log 2/δt2 dt (49)

=
2
√

log 2√
π δt

√
π δt

2
√

log 2
erf

(

2a
√

log 2

δt

)

(50)

= erf

(

2a
√

log 2

δt

)

(51)

Solving for a, we introduce a variable X such that X represents a proportion of the total pulse energy

erf

(

2a
√

log 2

δt

)

= X (52)

2a
√

log 2

δt
= inverf(X) (53)

a =
δt

2
√

log 2
inverf(X) (54)

Having found a, let ζ(δt,X) be defined as the function returning a,

ζ(δt,X) =
δt

2
√

log 2
inverf(X) (55)

Where inverf(X) is the inverse error function. This function expresses the bounds required to obtain a
pulse with an energy of X of the total energy of an ideal Gaussian pulse. For example, the window for
a 40 fs pulse encompassing 99% of the total pulse energy would have bounds

ζ(40 fs, 0.99) =
40 fs

2
√

log 2
inverf(0.99) ≈ 43.75 fs (56)
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Therefore the window should have bounds at ±ζ(40 fs, 0.99).
An equivalent set of boundaries for the Fourier transformed pulse can be found by the same procedure.

Let ζ̃((δt,X) be defined as the analog to Equation 55: a function which returns the symmetric bounds in
angular frequency space for which the integral of the magnitude squared envelope returns the proportion
X of the total pulse energy.

ζ̃(δt,X) =
2
√

log 2

δt
inverf(X) (57)

3.2 Sech Pulse

In its simplest form, the sech pulse is defined

f(t, α) = A sech

(

2t

α

)

(58)

(59)

To solve the integral

∫ ∞

−∞
|f(t, α)|2 dt (60)

and obtain the normalizing constant A, we use an integral of the form[1]

∫

dx

coshn(ax)
=

sinh(ax)

a (n− 1) coshn−1(ax)
+

n− 2

n− 1

∫

dx

coshn−2(ax)
(61)

noting sech x = cosh−1 x. With n = 2, and a = 2/α this becomes

∫ ∞

−∞

dt

cosh2
(

2t
α

) =
α sinh

(

2t
α

)

2 cosh
(

2t
α

)

∣

∣

∣

∣

∣

∞

−∞
+ 0 (62)

=
α

2
tanh

(

2t

α

)∣

∣

∣

∣

∞

−∞
(63)

=
α

2

(

lim
t→∞

tanh

(

2t

α

)

− lim
t→−∞

tanh

(

2t

α

))

(64)

The second limit can be found by rewriting the hyperbolic tangent in terms of exponentials

tanh

(

2t

α

)

=
e2t/α − e−2t/α

e2t/α + e−2t/α
· e

2t/α

e2t/α
(65)

=
e4t/α − 1

e4t/α + 1
(66)

lim
t→−∞

e4t/α − 1

e4t/α + 1
= −1 (67)

and the first through a similar argument but by multiplication with a different unity function

tanh

(

2t

α

)

=
e2t/α − e−2t/α

e2t/α + e−2t/α
· e

−2t/α

e−2t/α
(68)

=
1− e−4t/α

1 + e−4t/α
(69)

lim
t→∞

1− e−4t/α

1 + e−4t/α
= 1 (70)
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In terms of the original integral this evaluates to
∫ ∞

−∞
A

dt

cosh2
(

2t
α

) = 1 (71)

A2 α

2

(

1− (−1)
)

= 1 (72)

A =
1√
α

(73)

which is plugged into the original equation, normalizing it and obtaining

f(t, α) =
1√
α

sech

(

2t

α

)

(74)

Solving for the parameter α

|f(t, α)|2 =
1

2
|f(0, α)|2 (75)

sech

(

2t

α

)

=
1√
2

(76)

2t

α
= arcsech

(

1√
2

)

(77)

t = ±α

2
arcsech

(

1√
2

)

(78)

δt = α arcsech

(

1√
2

)

, α =
δt

arcsech
(

1√
2

) (79)

using the identity

arcsech(x) = log
1 +

√
1− x2

x
, 0 < x ≤ 1 (80)

the function can be expressed in terms of exponentials. When α is substituted into Equation 74, the
final form in the time domain is obtained

f(t, δt) =

(

log
(

1 +
√
2
)

δt

)1/2

sech

(

2t log
(

1 +
√
2
)

δt

)

(81)

To take the Fourier transform of Equation 81, a table of integrals[2] is used to express the Fourier
transform in terms of Gamma functions

F
+
(

sechn (t/α)
)

= f̃(ω, δt) (82)

=
2n−1

Γ(n)
Γ

(

n+ iωα

2

)

Γ

(

n− iωα

2

)

(83)

along with the identity[1]

Γ

(

1

2
+ iy

)

Γ

(

1

2
− iy

)

=

∣

∣

∣

∣

Γ

(

1

2
+ iy

)∣

∣

∣

∣

2

(84)

=
π

cosh(πy)
(85)

to obtain the Fourier transformed equation

f̃(ω, δt) = π

(

δt

4 log
(

1 +
√
2
)

)1/2

sech

(

πω δt

4 log
(

1 +
√
2
)

)

(86)
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As in the case of the Gaussian pulse, the FWHM of the sech pulse in the time domain is the parameter
δt. Solving for the width of the pulse in terms of f̃(ω, δt)

∣

∣

∣f̃(ω, δt)
∣

∣

∣

2

=
1

2

∣

∣

∣f̃(0, δt)
∣

∣

∣

2

(87)

sech

(

πω δt

4 log
(

1 +
√
2
)

)

=
1√
2

(88)

πω δt

4 log
(

1 +
√
2
) = arcsech

(

1√
2

)

(89)

ω = ±4 log2
(

1 +
√
2
)

π δt
(90)

δω =
8 log2

(

1 +
√
2
)

π δt
(91)

(92)

and by multiplication of δt with δω the time bandwidth product is obtained

δtδω = δt
8 log2

(

1 +
√
2
)

π δt
(93)

=
8 log2

(

1 +
√
2
)

π
≈ 1.9782 (94)

In terms of ordinary frequency

δtδν =
δtδω

2π
=

(

2 log
(

1 +
√
2
)

π

)2

≈ 0.3148 (95)

The sech pulse also has a useful formula for calculating the total energy contained within a region.
Beginning with the definite integral of Equation 63, and following the same procedure as was taken for
the Gaussian pulse

∫ a

−a

sech2
(

2t

α

)

=
α

2
tanh

(

2t

α

)∣

∣

∣

∣

+a

−a

(96)

=
1

2

(

tanh

(

2a log
(

1 +
√
2
)

δt

)

− tanh

(

−2a log
(

1 +
√
2
)

δt

))

(97)

= tanh

(

2a log
(

1 +
√
2
)

δt

)

(98)

then, solving a for a proportion of the pulse energy X the following is obtained

tanh

(

2a log
(

1 +
√
2
)

δt

)

= X (99)

2a log
(

1 +
√
2
)

δt
= arctanh(X) (100)

a =
δt

2

arctanh(X)

log
(

1 +
√
2
) (101)

And in the same regards as Equation 55,

ζ(δt,X) =
δt

2

arctanh(X)

log
(

1 +
√
2
) (102)
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or, in terms of exponential functions

ζ(δt,X) =
δt

4

log
(

1+X
1−X

)

log
(

1 +
√
2
) (103)

The same procedure can be used to obtain the parameter ζ̃(δt,X),

ζ̃(δt,X) =
4 arctanh(X) log

(

1 +
√
2
)

πδt
(104)

=
2 log

(

1+x
1−x

)

log
(

1 +
√
2
)

πδt
(105)

3.3 Lorentzian Pulses

Beginning in the time domain with a basic form of a Lorentzian envelope function,

f(t, α) =
A

1 + α2t2
(106)

Solving for the normalizing coefficient A using a table of definite integrals[2]

∫ ∞

−∞
|f(t, α)|2 dt = 1 (107)

A2π

2α
= 1 (108)

A =

√

2α

π
(109)

and inserting it into Equation 106, the following is obtained

f(t, α) =

√

2α

π

1

1 + α2t2
(110)

from which α can be determined

|f(t, α)|2 =
1

2
|f(0, α)|2 (111)

1

1 + α2t2
=

1√
2

(112)

√
2 = 1 + α2t2 (113)

√
2 − 1 = α2t2 (114)

t2 =

√
2 − 1

α2
(115)

t = ±
(√

2 − 1

α2

)1/2

(116)

δt = 2

√√
2 − 1

α
, α = 2

√√
2 − 1

δt
(117)

whereby substitution into Equation 110 yields the expression for the Lorentzian pulse in the time domain

f(t, δt) =

(

4
√√

2 − 1

πδt

)1/2
1

1 + 4
(√

2 − 1
)

t2/δt2
(118)
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The Fourier transform of Equation 118 is given by

F
(

f(t, δt)
)

= f̃(ω, δt) =

∫ ∞

−∞
f(t, δt) eiωt dt (119)

Using a similar integral form from the table[2]

∫ ∞

−∞

1

1 + at2
eiωt dt =

π√
a

e−|ω|/√a (120)

Substitution yields

f̃(ω, δt) =

(

πδt
√√

2 − 1

)1/2

exp

(

−|ω|δt
2
√√

2 − 1

)

(121)

Finally, determining the time bandwidth product of f̃(ω, δt),

∣

∣

∣f̃(ω, δt)
∣

∣

∣

2

=
1

2

∣

∣

∣f̃(0, δt)
∣

∣

∣

2

(122)

exp

(

−|ω|δt
2
√√

2 − 1

)

=
1√
2

(123)

|ω|δt
2
√√

2 − 1
=

log 2

2
(124)

|ω| = 2 log 2
√√

2 − 1

2δt
(125)

ω = ±2 log 2
√√

2 − 1

2δt
(126)

δω =
2 log 2

√√
2 − 1

δt
(127)

leaves

δtδω = 2 log 2

√√
2 − 1 ≈ 0.8922 (128)

And in terms or ordinary frequency

δtδν =
δtδω

2π
=

log 2
√√

2 − 1

π
≈ 0.142 (129)

The Lorentzian pulse envelope in the time domain does not have a functional form for the proportional
energy, as did the Gaussian and the sech pulses. It is therefore left to be evaluated numerically if needed
by using the equation

∫ a

−a

|f(t, δt)|2 dt =
2

π

(

aα

1 + a2α2
+ arctan(aα)

)

= X (130)

In terms of angular frequency however, a closed form can be found to be

∫ ã

−ã

∣

∣

∣f̃(ω, δt)
∣

∣

∣

2

dω = 2π

(

1− exp

(

−
√

1 +
√
2 a δt

))

= 2πX (131)

with a solution

ζ̃(δt,X) =
− log(1−X)

δt
√

1 +
√
2

(132)
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Figure 3: Plot of |f(t)|2 and |f(ω)|2 for the Gaussian, sech, and Lorentzian pulse envelopes. Functions
are normalized such that the total area under their curve is unity. Units are arbitrary (δt = 4).
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4 Changes to this Document

• 14 October 2011: Initial draft converted from thesis.

• 28 May 2012: Cosmetic changes, new version of Figure 3.
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