
Notes on Sequences Generated by Repeated Application of

Different Operators on Sequential Natural Numbers

Aaron Webster

October 12, 2011

1 Purpose

The purpose of this document is to give some convenient non-recursive ways of computing resultant
sequences produced by the repeated application of operators on sequential natural numbers N (OEIS
A000027). That is to say, for an operator ⋄ on a set of k numbers n = {n1 . . . nk : nk ∈ N}

n1 = 0 (1)

n1 = 1 (2)

n2 = 2 (3)

· · · (4)

the resulting sequence an is defined by

ak = 1 ⋄ 2 ⋄ 3 ⋄ 4 . . . ⋄ nk−1 ⋄ nk (5)

In this document, n shall refer to OEIS A000027 and nk the kth term in that sequence.

2 Addition

The addition operator is represented by the + symbol. The sequence produced by addition

ak = 1 + 2 + 3 + 4 . . .+ nk−1 + nk (6)

is familiar in the notation of the sum

ak =

k
∑

i=0

ni (7)

The result is known as the triangular numbers (OEIS A000217). The first few terms in this sequence are

ak = {0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, . . .} (8)

The formula for the kth term of this sequence is given by

ak =
k(k + 1)

2
=

k2 + k

2
(9)

This is the first order case of Faulhaber’s formula, used to compute certain types of polynomials of the
same name. Note that since either k or k + 1 is even, k(k + 1)/2 is an integer and, with the exception
of a3, must be composite.

2.1 Subtraction

Since there are no negative numbers in N, application of the subtraction operator is more or less nonsen-
sical. Nonetheless it is trivial to see that the result of subtraction is identical to that of addition when
the result is multiplied by −1.

1



3 Multiplication

The sequence produced by repeated applications of the multiplication operator × on n

ak = 1× 2× 3× 4 . . .× nk−1 × nk (10)

is also notationally familiar as the product

ak =

k
∏

i=1

ni = k! (11)

with the result being the factorial of k, and the sequence is known as the factorial numbers (OEIS
A000142). Note that this sequence starts with n1 instead of n0. In this case, there is no analytic
expression, but a number of interesting algorithms and their implementations may be found online at a
page maintained by Peter Luschny 1

4 Conjunction (AND)

The logical conjunction is represented by the operator ∧. Its truth table is as follows.

p q ∧
0 0 0
0 1 0
1 0 0
1 1 1

The result of repeated applications of the logical conjunction

ak = 1 ∧ 2 ∧ 3 ∧ 4 . . . ∧ nk−1 ∧ nk (12)

= {0, 0, 0, 0, 0, 0, . . .} (13)

is uninteresting. The sequence will be the same whether 1 or 0 is chosen as the starting value. It is
mentioned here only for the sake of completeness.

5 Disjunction (OR)

The truth table of the logical disjunction, represented by the ∨ operator is

p q ∨
0 0 0
0 1 1
1 0 1
1 1 1

The sequence produced is OEIS A000122

ak = 1 ∨ 2 ∨ 3 ∨ 4 . . . ∨ nk−1 ∨ nk (14)

= {0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31, 31, 31, 31, . . .} (15)

1http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

2

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm


Note that when a bit is set in the binary representation of the sequence ak, it never becomes unset

a0 = 0000b (16)

a1 = 0001b (17)

a2 = 0011b (18)

a3 = 0011b (19)

a4 = 0111b (20)

a5 = 0111b (21)

a6 = 0111b (22)

a7 = 0111b (23)

a8 = 1111b (24)

... (25)

therefore ak will always be one less than a power of two. The most intuitive way of accomplishing this
is with the following C code, which is a modification of an algorithm for rounding a number up to the
next highest power of two. 2

a_k = k;

a_k |= a_k >> 1;

a_k |= a_k >> 2;

a_k |= a_k >> 4;

a_k |= a_k >> 8;

a_k |= a_k >> 16;

Given k, this returns ak assuming k is a 32 bit integer. For a 64 bit integer, simply add the extra
operation k| = k >> 32.

6 Exclusive Disjunction (XOR)

The exclusive disjunction is represented by the ⊕ operator. It’s truth table is

p q ⊕
0 0 0
0 1 1
1 0 1
1 1 0

The resulting sequence is OEIS A003815

ak = 1 ∨ 2 ∨ 3 ∨ 4 . . . ∨ nk−1 ∨ nk (26)

= {0, 1, 3, 0, 4, 1, 7, 0, 8, 1, 11, 0, 12, 1, 15, 0, 16, 1, 19, 0, 20, 1, . . .} (27)

To find ak, the following piecewise definition may be used

m = k mod 4 (28)

ak =



















k if m = 0

1 if m = 1

k + 1 if m = 2

0 if m = 3

(29)

Alternatively, the following C code may be convenient as a way to avoid branch conditions.

2http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2

3

http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2


m = k % 4;

a_k = (m>>1)^(m&1)+(!(m&1))*k;

This essentially works by creating the bit pattern 0110 corresponding to the addition of one when m = 1
or m = 2 and adding it to the pattern 1010, corresponding to the addition of k to this result when m = 0
or m = 2.

4


	Purpose
	Addition
	Subtraction

	Multiplication
	Conjunction (AND)
	Disjunction (OR)
	Exclusive Disjunction (XOR)

