Notes on Sequences Generated by Repeated Application of
Different Operators on Sequential Natural Numbers

Aaron Webster

October 12, 2011

1 Purpose

The purpose of this document is to give some convenient non-recursive ways of computing resultant
sequences produced by the repeated application of operators on sequential natural numbers N (OEIS
A000027). That is to say, for an operator ¢ on a set of kK numbers n = {ny...n; : ny € N}

ny =0 (1)
ny=1 (2)
No = 2 (3)
(4)
the resulting sequence a,, is defined by
ap=1020304...0n_10n (5)
In this document, n shall refer to OEIS A000027 and nj, the k'™ term in that sequence.
2 Addition
The addition operator is represented by the 4+ symbol. The sequence produced by addition
ar=1+24+3+4...+np_1+np (6)

is familiar in the notation of the sum

k
ar =Y n; (7)
i=0
The result is known as the triangular numbers (OEIS A000217). The first few terms in this sequence are
ar =40,1,3,6,10, 15,21, 28, 36,45, 55, 66, 78,91, 105, 120, 136, 153, . . .} (8)
The formula for the k™ term of this sequence is given by

k(k+1) Kk +k
2 2 )

This is the first order case of Faulhaber’s formula, used to compute certain types of polynomials of the
same name. Note that since either k or k + 1 is even, k(k + 1)/2 is an integer and, with the exception
of a3, must be composite.

2.1 Swubtraction

Since there are no negative numbers in N, application of the subtraction operator is more or less nonsen-
sical. Nonetheless it is trivial to see that the result of subtraction is identical to that of addition when
the result is multiplied by —1.



3 Multiplication
The sequence produced by repeated applications of the multiplication operator x on n
ap =1X2X3X4...Xnp_1 XNy (10)

is also notationally familiar as the product

k
ap = H?’Ll‘ = k! (11)
i=1

with the result being the factorial of k, and the sequence is known as the factorial numbers (OEIS
A000142). Note that this sequence starts with n; instead of ng. In this case, there is no analytic
expression, but a number of interesting algorithms and their implementations may be found online at a
page maintained by Peter Luschny !

4 Conjunction (AND)

The logical conjunction is represented by the operator A. Its truth table is as follows.

The result of repeated applications of the logical conjunction

ar =1A2A3N4...ANnp_1 Ang (12)
— {0,0,0,0,0,0,...} (13)

is uninteresting. The sequence will be the same whether 1 or 0 is chosen as the starting value. It is
mentioned here only for the sake of completeness.

5 Disjunction (OR)

The truth table of the logical disjunction, represented by the V operator is

The sequence produced is OEIS A000122

ap=1V2VvV3V4...Vng_1Vn (14)
= {0, 1,3,3,7,7,7,7,15,15,15,15,15,15,15,15, 31, 31,31, 31, .. } (15)

Thttp://www.luschny.de/math/factorial/FastFactorialFunctions.htm


http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

Note that when a bit is set in the binary representation of the sequence ay, it never becomes unset

ao = 0000b (16)
a1 = 0001b (17)
ay = 0011b (18)
as = 0011b (19)
as = 0111b (20)
as = 0111b (21)
ag = 0111b (22)
ar = 0111b (23)
as = 1111b (24)

(25)

therefore a; will always be one less than a power of two. The most intuitive way of accomplishing this
is with the following C code, which is a modification of an algorithm for rounding a number up to the
next highest power of two. 2

a_k = k;

a_k |= a_k > 1;
a_k |= a_k > 2;
a_k |= a_k > 4;
a_k |= a_k > 8;
a_k |= a_k >> 16;

Given k, this returns ap assuming k is a 32 bit integer. For a 64 bit integer, simply add the extra
operation k| = k >> 32.

6 Exclusive Disjunction (XOR)

The exclusive disjunction is represented by the & operator. It’s truth table is

The resulting sequence is OEIS A003815

ap,=1V2V3V4...Vng_1Vn (26)
= {0, 1,3,0,4,1,7,0,8,1,11,0,12,1,15,0,16,1,19,0, 20,1, .. } (27)

To find ay, the following piecewise definition may be used

m =k mod 4 (28)
k ifm=0
1 ifm=1

= 29

TV k41 ifm=2 (29)
0 ifm=3

Alternatively, the following C code may be convenient as a way to avoid branch conditions.

%http://graphics.stanford.edu/~seander/bithacks . html#RoundUpPower0f2


http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2

m=%k % 4;
a_k = (m>>1) " (m&1)+(! (m&1) ) *k;

This essentially works by creating the bit pattern 0110 corresponding to the addition of one when m =1
or m = 2 and adding it to the pattern 1010, corresponding to the addition of k to this result when m =0
or m=2.



	Purpose
	Addition
	Subtraction

	Multiplication
	Conjunction (AND)
	Disjunction (OR)
	Exclusive Disjunction (XOR)

